## Math 522 Exam 11 Solutions

1. For $n=13, a=2$ is a primitive root, whose index table is below for convenience. Use indices to find all solutions to the congruence $5 x^{4^{987}} \equiv x^{11^{654}}(\bmod 13)$.

| k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $2^{k}$ | 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7 | 1 |

We have ind $5 x^{4^{987}} \equiv$ ind $x^{11^{654}}(\bmod 12)$. Using the index properties we simplify as ind $5+4^{987}$ ind $x \equiv 11^{654}$ ind $x$ $(\bmod 12)$. Note that $4^{2} \equiv 4(\bmod 12)$, hence $4^{987} \equiv 4$. Note also that $11 \equiv-1$, so $11^{654} \equiv(-1)^{654} \equiv 1(\bmod 12)$. We therefore simplify as $3($ ind $x) \equiv-9 \equiv 3(\bmod 12)$. This has three solutions, ind $x \equiv 1,5,9(\bmod 12)$, which correspond to $x \equiv 2,6,5(\bmod 13)$.
2. Find a primitive root modulo $4394=2 \cdot 13^{3}$.

From the first problem, we know that 2 is a primitive root modulo 13. We calculate $2^{12} \equiv 40\left(\bmod 13^{2}\right)$. Since this isn't 1 , we know that 2 is a primitive root modulo $13^{2}$, and hence also modulo $13^{3}$. However, since 2 is not odd, it is not a primitive root modulo 4394 ; instead $2+13^{3}=2199$ is.

