Math 522 Exam 11 Solutions

1. For n = 13, a = 2 is a primitive root, whose index table is below for convenience. Use indices to find all solutions to the congruence $5x^{4^{987}} \equiv x^{11^{654}} \pmod{13}$.

k	1	2	3	4	5	6	7	8	9	10	11	12
2^k	2	4	8	3	6	12	11	9	5	10	7	1

We have ind $5x^{4^{987}} \equiv ind x^{11^{654}} \pmod{12}$. Using the index properties we simplify as $ind \ 5 + 4^{987} \ ind \ x \equiv 11^{654} \ ind \ x$ (mod 12). Note that $4^2 \equiv 4 \pmod{12}$, hence $4^{987} \equiv 4$. Note also that $11 \equiv -1$, so $11^{654} \equiv (-1)^{654} \equiv 1 \pmod{12}$. We therefore simplify as $3(ind \ x) \equiv -9 \equiv 3 \pmod{12}$. This has three solutions, $ind \ x \equiv 1, 5, 9 \pmod{12}$, which correspond to $x \equiv 2, 6, 5 \pmod{13}$.

2. Find a primitive root modulo $4394 = 2 \cdot 13^3$.

From the first problem, we know that 2 is a primitive root modulo 13. We calculate $2^{12} \equiv 40 \pmod{13^2}$. Since this isn't 1, we know that 2 is a primitive root modulo 13^2 , and hence also modulo 13^3 . However, since 2 is not odd, it is not a primitive root modulo 4394; instead $2 + 13^3 = 2199$ is.